首页> 外文OA文献 >Detecting Dominant Vanishing Points in Natural Scenes with Application to Composition-Sensitive Image Retrieval
【2h】

Detecting Dominant Vanishing Points in Natural Scenes with Application to Composition-Sensitive Image Retrieval

机译:应用自然场景中检测主导消失点   对构图敏感的图像检索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Linear perspective is widely used in landscape photography to create theimpression of depth on a 2D photo. Automated understanding of linearperspective in landscape photography has several real-world applications,including aesthetics assessment, image retrieval, and on-site feedback forphoto composition, yet adequate automated understanding has been elusive. Weaddress this problem by detecting the dominant vanishing point and theassociated line structures in a photo. However, natural landscape scenes posegreat technical challenges because often the inadequate number of strong edgesconverging to the dominant vanishing point is inadequate. To overcome thisdifficulty, we propose a novel vanishing point detection method that exploitsglobal structures in the scene via contour detection. We show that our methodsignificantly outperforms state-of-the-art methods on a public ground truthlandscape image dataset that we have created. Based on the detection results,we further demonstrate how our approach to linear perspective understandingprovides on-site guidance to amateur photographers on their work through anovel viewpoint-specific image retrieval system.
机译:线性透视广泛用于风景摄影中,以在2D照片上创建深度感。对风景摄影中线性透视的自动理解在现实世界中有多种应用,包括美学评估,图像检索和照片构图的现场反馈,但是,对自动透视的了解还很渺茫。通过检测照片中的主要消失点和相关的线条结构,我们解决了这个问题。但是,自然景观场景带来了巨大的技术挑战,因为通常会聚不足以消失到主要消失点的坚固边缘的数量不足。为了克服这一难题,我们提出了一种新颖的消失点检测方法,该方法通过轮廓检测来利用场景中的全局结构。我们表明,在我们创建的公共地面真理景观图像数据集上,我们的方法明显优于最新方法。根据检测结果,我们进一步证明我们的线性透视理解方法如何通过anovel特定于视角的图像检索系统为业余摄影师提供现场指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号